Nairian models and forcing axioms

Douglas Blue

Luminy Set Theory Workshop 2025

The Proper Forcing Axiom

Conjecture

PFA implies there is an inner model with a supercompact cardinal.

Theorem (Todorčević)

Assume PFA. Then $\neg \Box(\kappa)$ for all $\kappa > \omega_1$.

- ▶ Lower bound computations for PFA go through failures of square
 - Schimmerling, Steel, Jensen-Schimmerling-Schindler-Steel
 - Sargsyan-Trang have obtained a model of LSA

Conjecture

- 1. (Zeman) $\neg \Box_{\kappa}$ for κ singular is equiconsistent with a subcompact
- 2. (Steel) $\neg \Box_{\kappa}$ for κ singular strong limit requires a superstrong

The Proper Forcing Axiom

Theorem (Viale-Weiss)

Suppose κ is an inaccessible cardinal and PFA is forced by an iteration $\mathbb P$ collapsing κ to ω_2 such that

- 1. \mathbb{P} is the direct limit of an iteration $\langle \mathbb{P}_{\alpha} : \alpha < \kappa \rangle$ which takes direct limits stationarily often, and
- 2. $|\mathbb{P}_{\alpha}| < \kappa$ for all $\alpha < \kappa$.

Then κ is strongly compact. If $\mathbb P$ is proper, then κ is supercompact.

The Proper Forcing Axiom

- ▶ I.e. If PFA holds and N is an inner model with the ω_2 -cover and ω_2 -approximation properties in which ω_2 is inaccessible, then ω_2^V is strongly compact.
- (Usuba) If δ is weakly compact and V[G] is a δ -cc forcing extension, then V has the δ -cover and δ -approximation properties in V[G].

Key question

Are there any other methods for building models of PFA/MM?

Woodin's consistency proof for Martin's Maximum

Theorem (Woodin)

Assume there is a Vopěnka cardinal δ and there is an elementary embedding $j: V_{\delta} \to V_{\delta}$ with $V_{\kappa} \prec V_{\delta}$, where $\kappa = \operatorname{crit}(j)$. Then there is a revised countable support iteration $\mathbb P$ of semiproper forcings such that if $g \subseteq \mathbb P$ is V-generic, then

$$V[g]_{\delta} \models \mathrm{ZFC} + \mathrm{MM}^{++}.$$

Moreover, in $V[g]_{\delta}$ there is no proper inner model of ZFC with the $\omega_2^{V[g]}$ -cover and $\omega_2^{V[g]}$ -approximation properties in $V[g]_{\delta}$.

Vacuous if the HOD conjecture is true

Axiom $(*)^{++}$

Theorem (Aspero-Schindler)

Assume MM^{++} . Then axiom (*) holds.

Definition (Axiom $(*)^{++}$)

There is a pointclass $\Gamma\subset\wp(\mathbb{R})$ and $g\subseteq\mathbb{P}_{\max}$ such that

- 1. $L(\Gamma, \mathbb{R}) \models AD^+$,
- 2. g is $L(\Gamma, \mathbb{R})$ -generic, and
- 3. $\wp(\mathbb{R}) \in L(\Gamma, \mathbb{R})[g]$.

Question (Woodin)

Is MM^{++} consistent with $(*)^{++}$? Is SRP consistent with $(*)^{++}$?

The cofinality of $\Theta^{L(\Gamma^{\infty},\mathbb{R})}$

- ightharpoonup G is the least ordinal which is not the surjective image of $\mathbb R$
- $ightharpoonup \Gamma^{\infty}$ denotes the collection of universally Baire sets

Theorem (Woodin)

- 1. $(*)^{++}$ implies $\Theta^{L(\Gamma^{\infty},\mathbb{R})} = \omega_3$
- 2. Suppose δ is a supercompact cardinal. If there are class many Woodin cardinals and V[g] is a δ -cc forcing extension in which $\delta = \omega_2$, then $V[g] \models \Theta^{L(\Gamma^{\infty}, \mathbb{R})} < \omega_3$.

Forcing over models of $AD_{\mathbb{R}}$ + " Θ is regular."

Theorem (Woodin)

Assume $AD_{\mathbb{R}} + \text{``}\Theta$ is regular." Then $\mathbb{P}_{\max} * Add(\omega_3, 1) \Vdash \mathrm{MM}^{++}(c)$.

Theorem (Caicedo-Larson-Sargsyan-Schindler-Steel-Zeman)

Assume $\mathrm{AD}_\mathbb{R}+$ " Θ is regular". Suppose the set of κ which are regular in HOD and have cofinality ω_1 is stationary in Θ . Then

$$\mathbb{P}_{\max} * Add(\omega_3, 1) \Vdash \mathrm{MM}^{++}(c) + \neg \Box(\omega_2) + \neg \Box_{\omega_2}.$$

Theorem (Larson-Sargsyan)

Assume $\mathrm{AD}_\mathbb{R} + \exists \lambda \bowtie_\lambda$. Then

$$\mathbb{P}_{\max} * Add(\omega_3, 1) * Add(\omega_4, 1) \Vdash \neg \Box(\omega_3) + \neg \Box(\omega_4).$$

▶ (Woodin) MM^{++} cannot be forced over a determinacy model of the form $L(S, \wp(\mathbb{R}))$ for $S \subset \mathrm{Ord}$.

Nairian models

Definition

Assume LSA and let $(\theta_\gamma:\gamma\leq\Omega)$ be the Solovay sequence. Suppose $\alpha+1\leq\Omega$ is such that

 $HOD \models "\theta_{\alpha+1}"$ is a limit of Woodin cardinals."

Let
$$M=V_{\theta_{\alpha+1}}^{\mathrm{HOD}}$$
 and $N=L_{\theta_{\alpha+1}}(\bigcup_{\eta<\theta_{\alpha+1}}(M|\eta)^{\omega})$.

- ▶ (Woodin, building on Steel) $N \models ZF$.
- ▶ For this talk, a *Nairian model* is an initial segment N_{γ} of N such that $N_{\gamma} \models \mathrm{ZF}$.
- Nairian models exist assuming less than a Woodin limit of Woodin cardinals

$$\Theta^{L(\Gamma^{\infty},\mathbb{R})}$$

Theorem (B.-Sargsyan)

For $i \in \{1, 2, 3\}$, the theory

- 1. there are class many Woodin cardinals,
- 2. Γ^{∞} is sealed, and
- 3. $\Theta^{L(\Gamma^{\infty},\mathbb{R})} = \omega_i$

is consistent.

▶ For ω_2 and ω_3 , uses forcing over Nairian models

Failures of square

Theorem (B.-Larson-Sargsyan)

Fix $n < \omega$. In a forcing extension of a Nairian model, $\neg \Box(\aleph_i)$ holds for all $i \in [2, n]$.

Theorem (B.-Larson-Sargsyan)

Let N_{γ} be the least initial segment of N such that $N_{\gamma} \models \mathrm{ZF}$. Then in a forcing extension $N_{\gamma}[g]$ of N_{γ} , $\neg \Box(\kappa)$ holds for all $\kappa > \omega_1$.

Corollary

 $ZFC + \forall \kappa > \omega_1 \neg \Box(\kappa) <_{Con} ZFC + WLW.$

Neeman-Steel) Assuming an iterability hypothesis, if δ is a Woodin cardinal such that $\neg\Box_{\delta} + \neg\Box(\delta)$, then there is an inner model of ZFC + "there is a subcompact cardinal."

The HOD conjecture I

Definition

A regular cardinal $\kappa>\omega_1$ is $\omega\text{-strongly measurable in HOD}$ if there is $\gamma<\kappa$ such that

- 1. $(2^{\gamma})^{\text{HOD}} < \kappa$
- 2. $\{\alpha < \kappa : cof(\alpha) = \omega\}$ cannot be definably partitioned into γ sets.

Theorem (HOD Dichotomy theorem; Woodin, Goldberg)

If δ is a supercompact cardinal, then exactly one of the following hold.

- 1. No regular cardinal $\gamma \geq \delta$ is ω -strongly measurable in HOD.
- 2. Class many regular cardinals are ω -strongly measurable in HOD.
- **HOD Hypothesis**: There is a class of regular cardinals which are not ω-strongly measurable in HOD.

The HOD conjecture II

Definition (HOD conjecture)

 $\mathsf{ZFC} + \mathsf{"there} \ \mathsf{is} \ \mathsf{a} \ \mathsf{supercompact} \ \mathsf{cardinal"} \ \vdash \mathsf{the} \ \mathsf{HOD} \ \mathsf{Hypothesis}.$

Theorem (Ben Neria-Hayut)

It is consistent relative to an inaccessible cardinal κ with $\kappa = \sup_{\alpha < \kappa} o(\alpha)$ that every successor of a regular cardinal is ω -strongly measurable in HOD.

Theorem (B.-Larson-Sargsyan)

In $N_{\gamma}[g]$, successors of singular cardinals are ω -strongly measurable in HOD.

▶ The HOD Hypothesis is not provable in ZFC.

Stationary Set Reflection I

Definition (SRP; Todorcevic)

Suppose $\lambda > \omega_1$ and $S \subset \wp_{\omega_1}(\lambda)$ is projective stationary. Then for every $X \subseteq \lambda$ such that $\omega_1 \subseteq X$ and $|X| = \omega_1$, there is $X \subseteq Y \subseteq \lambda$ of size ω_1 such that $S \cap \wp_{\omega_1}(Y)$ contains a club in $\wp_{\omega_1}(Y)$.

Theorem (Woodin)

Assume SRP. Then exactly one of the following hold.

- 1. $\operatorname{Ord}^{\omega} \subset \operatorname{HOD}$.
- 2. There is an ordinal α such that every regular cardinal $\kappa > \alpha$ is ω -strongly measurable in HOD.

Definition (The (HOD+SRP) conjecture)

ZFC + SRP proves that $Ord^{\omega} \subset HOD$.

Stationary Set Reflection II

Definition (SRP*; Woodin)

Suppose $\lambda > \omega_1$. There is a normal fine ideal $I \subset \wp(\wp_{\omega_1}(\lambda))$ such that

- 1. for every stationary $T \subset \omega_1$, the set $\{\sigma \in \wp_{\omega_1}(\lambda) | \sigma \cap \omega_1 \in T\} \notin I$
- 2. if $S \subset \wp_{\omega_1}(\lambda)$ is such that for each stationary $T \subset \omega_1$, $\{X \in S : X \cap \omega_1 \in T\} \not\in I$, there is $\omega_1 < \gamma < \lambda$ such that $S \cap \wp_{\omega_1}(\gamma)$ contains a club in $\wp_{\omega_1}(\gamma)$.

Theorem (Steel-Zoble)

Suppose NS $_{\omega_1}$ is saturated, $2^{\omega} \leq \omega_2$, and $\mathrm{SRP}^*(\omega_2)$. Then $L(\mathbb{R}) \models \mathrm{AD}$.

Theorem (B.-Sargsyan)

 SRP^* holds in $N_{\gamma}[g]$.

Stationary Set Reflection III

Quasi-Club Conjecture

In Nairian models, the quasi-club filter on $\wp_{\omega_1}(\lambda)$ is an ultrafilter for all $\lambda \in \operatorname{Ord}$.

Theorem (B. Sargsyan)

Assuming the Quasi-Club conjecture, $N_{\gamma}[g] \models SRP$.

Corollary

The (HOD+SRP) conjecture is false, assuming the Quasi-Club conjecture.

lacksquare ω_2 is a supercompact cardinal in N_γ

Theorem (B.-Sargsyan)

 SRP^* is consistent with $(*)^{++}$. If the Quasi-Club conjecture is true, then SRP is consistent with $(*)^{++}$.

Consequences of MM

Theorem (B.-Sargsyan)

The following hold in $N_{\gamma}[g]$.

- ► Moore's Open Mapping Reflection, and
- $ightharpoonup MA^+(\sigma\text{-closed}).$

Question

Does the P-Ideal Dichotomy hold in $N_{\gamma}[g]$?

Question

- 1. Is MM equivalent to some conjunction of these principles?
- 2. Could some fragment of MM⁺⁺ suffice to produce a "minimal" model of MM⁺⁺?

Conclusion: Further Questions

Question

Is ω_1 a Θ^+ -Berkeley cardinal in the full Nairian model?¹

Question

Can a Woodin cardinal exist in a forcing extension of a Nairian model?

Question

Are the universally Baire sets sealed in full Nairian models? In their ZFC forcing extensions?

Question

What is the axiomatic theory of N?

Thank you

¹A cardinal κ is η -Berkeley if for every transitive M with $|M| < \eta$ and every $\alpha < \kappa$, there is an elementary embedding $j: M \to M$ with $\operatorname{crit} \in (\alpha, \kappa)$.